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Abstract

This paper treats the problem of determining

the minimax inspection schedule for detecting failure

of a component or system when inspections have a

cost and cost of failure is proportional to the length

of time between failure and detection. The mini-

maxing is done with respect to all failure distribu-

tions having a given mean.
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ON OPTIMUM INSPECTION SCHEDULES

1. Introduction

Consider a certain component of an operating system. The

system must operate for T units of time. T may be finite (the

finite horizon case) or infinite (the infinite horizon case).

The component can fail at a random time Y. However, if it

fails there is a cost incurred that is proportional to the

time between failure and its detection. Failure can only be

detected if the component is inspected. However, there is a

cost for each inspection. Our interest concentrates on the

problem of determining an inspection schedule x that reconciles

the two types of cost. Whatever occurs subsequent to the

detection of a failure or to the completion of the system's

mission at time T is not considered.

In particular, if x = (xOxl,...,Xn+l), x0 = 0, Xn+ 1 = T

in the finite horizon case, or x = (x0 1xl1,...), x0 = 0 in the

infinite horizon case is a given schedule of inspection, F

is the distribution function of Y, c is the cost of an inspection,

and v is the cost per unit time of an undetected component

failure, then the expected cost associated with the schedule is

C (x,F)

n x
= V{r+l)c + v(x - t)}dF + (n+l)c(l-F(T))

r=O xr|

for T < , <

11 X r+ I
= f r {(r+l) c + v(x r+l-t dF(t)
r=O x r

for T = , n

LA _ _ _



When F is not completely known the problem is to find x

to minimize U(x) where U(x) = sun C(x,F), and ) is the class
Fc

of possible distribution functions. Assuming T < , Derman[21,

originally, considered this problem for the class 4 of all

distribution functions for non-negative random variables,

allowing for the possibility that detection of a failure at

an inspection is uncertain. Explicit formula for the optimal

schedules, called minimax schedules, were obtained. Roeloffs

[5), assuming certain detection, obtained minimax schedules

for the case when C6 is the class of distributions having a

known quantile. Kander & Raviv [4] assumed Roeloffs's case

with the added assumption that all distributions in have

increasing failure rates, Beichelt [1] generalized Derman's

results to the case that the failure costs were, rather than

being linear, an increasing function of the time between

failure and detection. Beichelt, also, considered, in the

infinite horizon case, with increasing failure costs, the

minimax schedule when = consists of all non-negative

distributions F with a given mean p. In this case, he proves

that an optimal schedule has equal intervals.

We consider for the finite horizon case the problem of
Fr

determining the minimax schedule when = In Derman [2],

the observation that f? can be reduced to , the class of

degenerate distributions (or one point distributions), is

exploited. Analagously, we employ a theorem due to Hoeffding [3],

that enables us to reduce cf, the class of all two-point

-2-



distributions with mean j. Results are obtained that permit

the numerical determination of the minimax schedule. We also

obtain Beichelt's infinite horizon schedules by the limit of

minimax schedules as T -.

2. The minimax schedule where only the mean of F is known.

We are interested in the problem of determining the

minimax schedule when only the mean of F is known. For the

infinite horizon case, Beichelt [1] showed that the minimax

schedule is a strictly periodic schedule with the equal interval

space 6, 6 =/.

We focus on the problem for the finite horizon case.

We start with this problem by considering the supremum expected

cost for a given schedule x, that is sup C(x,F). Hoeffding [3]

proved sup C(x,F) = sup C(x,F). In section 2.1, we
.' 2 FE

show

sup Gi (x ) , Gij(x)}= sup {C(x,F)}
O<i<m Fe 2

m+l<j <n

where x < m p x

r(x) = (r+l)C + v(xr 1 -x)

r=0,1,2,...,n, x0 =0, xn 1 = T

and x. - x.
C..(x) = Gi(x) i + G.(x)1) I X. - X J - x

-3-



In section 2.2., we prove a key theorem, which gives a

necessary condition of the minimax schedule, that is

(2.1) Gr+l (x) - G r(x) t= Z
Xr+l - xr

r=,1,2 ,...,n for some Z > 0. We call the schedule satisfying

(2.1) a schedule with equal average increment (SEAI). The

supremum expected cost of a SEAI has a simple form, G0 (x) + Zp.

In section 2.3., we convert this problem to a problem of

determining the minimal point of a continuous function with a

single variable. Under some certain conditions, the function

is piecewise convex.

In section 2.4., we show that the minimax schedule for

the infinite horizon case is the limit of the minimax schedule

as T

In section 2.5., when T < -, an algorithm for computing

minimax schedule is given.

2.1. Supremum expected cost of an inspection schedule.

Consider a certain component of an operating system.

The component can fail at a random time Y; occasional inspection

is necessary to determine when it does fail. The cost of a

failure, vt, where t is the time between the failure and its

inspection, and v is the cost per unit of t, can be reduced

by frequent inspection. However, there is a cost c for each

inspection, so the number of inspections must be kept small.

The best compromise between these two conflicting requirement

in the sense of minimizing expected total costs is called the

optimum inspection schedule. In a finite horizon problem we
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assume the system will stop operating when a stipulated time

T is reached or when a failed component is detected.

In this section, we will derive a formula for supremum

expected total cost for any inspection schedule assuming the

mean of Y is given.

Definitions:

U is the mean of Y;

qj is the class of all distribution functions

for nonnegative random variables.

is the subset of that have expected lifetime p;

is the subset of ( that have exactly two points of

increase;

x = (xOx le ... xn, xn+l) denotes an inspection schedule

(short: schedule), where x0=0, Xn+l = T, and xi  Xi+l,

i=0 ,1 ,2, . . . ,n;

m is the index of an inspection in x such that x <
m

C(x,F) is the expected total cost of x if F is the c.d.f.

of Y;

The supremum expected cost of x is u(x) = sup C(x,F).

If yl1 y2 denotes two increasing points of the c.d.f.,
of2

F(Yl'y 2 ) , of Y, which is a member of then the probability

function of Y is

P(Y = Yl) Y2

P(Y = Y2 ) = Y2- Yl

-5-



,where 0 < y P < Y2 < ~

Proposition 2.1. If x is a given schedule with xml<T

and Fy )is a c.d.f. in2 wih<Y x M then

C(x,F(y ly 2 )) < u(x).

Proof.

C (x,F (y1 y)

[(+)C + V(x. Y2I7 ~ H (n1C+- 1

,if x. y1 < ,<x and < y2 <xm~1 .

By taking partial derivative with respect to y, we have

2 (i-rn) C + V(x i - x )1l < 0

which shows that C(x,P(y VY 2 )) is a strictly decreasing

function on y 2; hence, we have

C (x,F (y1 y2 ) )I

< C(x,F(y1 1 p+))

= (m+1) C + V (xm+1 1

(m+1) C + V (x ~ -x)

limr C(x,F(x m+' Y2))

rn 2 "

< U(x) 
Q.E.D.

Proposition 2.2. U(x) =sup C(x,F)
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, )

Proof. Let(, {FcP I F is a step function) and d(FG) =

suplF(t) - G(t)l; theorem 2.2. in Hoeffding [3] states

xt

(2.1.1.) sup C(x,F) = sup C(x,F) = sun C(x,F)

Fe& Fc,

if (A) C(x,F) is a continous function on for x fixed, in the

sense of d(.,.), and (B) for any FvL, there is a sequence {Fn IC

such that lir Fn = F in the sense of d(.,.).
n-

The satisfaction of A and B are easily verified.

Definitions:

flj (YlY 2 )

= C(x,F(yl,y 2 ))

=g( Y2 - g - Yl

Y Y2 - Yl Y 2- Yl

<wherex <V < 1 < i < m, m+l < j< n+l,

Yl E (xi,xi+l], Y2 E (x 1 x]j+l] and

gr (y) = (r+l)C + V(Xr+ 1 - Y) if y C (x, Xr+l ] and

r

= (n+l)C if y > T and r = n+l

Gij (x) f ij(xi +, xj+)

Gr(x) = gr(xr

Theorem 2.1. For any schedule x,

u(x) = sup (Gi.(x),G i(x)}.

o<i<m

m+l<j <n
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Proof. The partial derivatives with respect to y1 and y

on fjiy 1 2  respectively are

(2.1.3) = (i-j)C + V(x. -xj~ H< 0, if j < n
yl)2i+ljl

(214 2 H-)C + V(x 0,i-j nl
(2.1.)f= i+l y2)<0ifj=nl

af. (y

(2.1.5) 2 [(i -j)C + V(x~+ x 1 )]< 0, if j < n

(2.1.6) ~~2'~2 t(i-n)C + V(x~+ - H1 , if j n+l.

If the value of (2.1.6) is negative then

f nly Y < Gin (x), together with (2.1.1), proposition 2.1.,

(2.1.3), (2.1.4), (2.1.5), we have

U(x) = sup (G. .j(x)}
0<i<m

mn+ 1 <j <ri

If the value of (2.1.6) is nonnegative then, we have

y' 2-*0

which implies

U(x) = sup {G. (x), G W)
O.,i<m i~ 1

m+l1<j <n
Q.E.D.



2.2. The minimax schedule is a schedule with equally average

increments

Definitions:

i denotes the index of an inspection of a schedule x such

that 0 < i < m;

j denotes the index of an inspection of a schedule x such

that m+l < j < n.

Proposition 2.3. x is a given schedule. If j m+l, or

j=m+l but i4m, then

G. (x) is an increasing function on xi, xj+ 1 and decreasing

function on x,x j

If j = m+l and i=m, then

Gin(rel) (x) is a decreasing function on xm -

Proof.

If j 3 m+l, or j = m+l but i/ m then

-- 2 {(i-j)C - V(x -x I} < 0ax. (x.-x.) j+1 i+l

3G.. x. -
92 =V 3, > 0axi+ 1  xji - Xi

3G.. U - x.

3-T- (x-x)2 {(i-j)C - V(x - xi+l) 0

G.. u- xi
-j 1 = V - - > 0.
aj+l xj- 1

If j = m+l and i = m then
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aG (m+l)m
ax
m

- 2 {-C - V(x - x0) <0

(x x+ ) m+2 m+l

Q.E.D.

Proposition 2.4. For any schedule x, G ij(x) < Gi(x) if and

only if Gj(x) < Gi(x).
G.(x) -G. (x)

Proof. G. x) = Gi(x) + G (u - xi)J 1

< G i (x)

1=< G (X) < Gi (x), since p-xi > 0

Q.E.D.

Proposition 2.5. If x is the minimax schedule and fj} n >_ j > m+l

is nonempty set, then u(x) = sup {Gi (x).
i,j J "

Proof. If u(x) = G. (x) for some i0 <m, and G x)'00

> G. (x) for all j £ {j} n > j > m+l, then, by nonemptiness10)

of 1j) n > j > m+l and proposition 2.4., we have G i+ l (x) < G. (x).

Hence, we can find a sufficiently small c > 0 and the corresponding

schedule

. xi-2(mi+l),..., Xm+l-, Xm+2,..., xn) such

that

(2.2.2) Gm+l (X) < Gm+l (XC) < Gi 0(x).

Since x1 x - xi i=0,1,..., m and x - x x -X+ 1  x i+1 ' '' j+ j j ,
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J=m+2, ... n, we also have

(2.2.3) G.(x') < G Wx < G .(x) ,i=O,l,...,pjk and

1 0

(2.2.4) G.(x) = G.(x) < G. (x), j = m+2,...,n.

Case 1. x m 1 > 1

If c is sufficiently small such that x m+l - C a then,

by (2.2.2), (2.2.3), (2.2.4), proposition 2.4. and theorem

2.1, we have

(2.2.5) U(xC') = sup{G ij (x ) , G.i (x)

< G. (xW UWx.

Case 2. x M 1 = 1

In this case, x m+l E < 1j. (2.2.5.) becomes

U(xcL) = sup {G. .j(x'), G.i(x C
0<i<m+l2.1

m-I2<j <n

< G. Cx)

=U(x).

Both case 1 and case 2 lead to a contradiction; thus,

U(x) = sup {G.i (x)}.
i,j 1)

Q.E.D.

Definitions:

If x is a schedule, G.(xW - C0.(xW is called an increment

with respect to (i,j) and Ax(j,i) = 2 is called
x. - x



an average increment with respect to (i,j). If x is a

schedule such that for some Z Ax(r+l,r) = Z, r=0,l,...,n

then x is called a schedule with equal average increment (SEAI).

Proposition 2.6. If for a schedule x, there exists i 0 andj0

such that

(2.2.6) G i0 m+l (x) - 0 'in Wx and

(2.2.7) G0 Oj (x ... (x)

then x is a SEAI.

Proof. For convenience, let G C. ()r=G()

A U, j) = Ax(i, j). Since

G = + AOj'i) (~-~

= G. - tA(j,i) (x.j- 1)

for any schedule x and any existing pair (i,j) we have,

by (2.2.6:,

A(j,i 0  - L~j+l, i 0 )

G 1~ (,i0 C,10 j+l Gi 0 o

'0 10

j=m+1, ..., n.

If jo m+1 or xm+l > pi, then, by (2.2.7) and the same

reason as above, we have

(2.2.8) A(j01 i) - A(j 0 , i+l) = 0 , =,,.,-. If j,0 =m+1

and x =, thenG 0. C =,., hc mlem+1 im+l Gm+iiiO.., wih mle

=i Gm+i ; thus, (2.2.8) still holds.

-12-



In other words, the following holds:

(2.2.9) A(m+l, i0) = ... = A(n,i0 ) and

(2.2.10) A(j 0 ,O) = ... A(J 0 .m).

Since (2.2.9) and (2.2.10) have the same term A(J0,i 0 ) ,

we have

(2.2.11) A(j0 0) = A(j0 ,1) ... = A(m+l,i0 ) ... n 0 )

Setting the expression of (2.2.11) equal to Z, by the

definition of A(.,.) and A(j0 ,i) = A(j 0 ,i+1)=Z, we have

G. - G = G. - G. + G G.1+ 0 i Gi+l 30

(Xjo - x i )Z + (xi+1 - jo0) z

(xi+1 - xi )Z.

This implies

(2.2.12.a) A(i+l,i) = Z for i=0,1,...,m-1; similarly, by

A(j+l, i0) = A(j,i 0 ) = Z we have

(2.2.12.b) A(j+I,j) = Z for j=m+l,...,n.

What remains to be shown is that the value of A(m+l,m)

is also Z. This follows from

Gjo - Gio

Z =I

10xj0 -.

(G-G )+(G_ -)+...+(Gm- )

J0  j-1 j 'Xjo-Xi
0

+(Gm-Gm_ 1 ) + ... +(Gi0+ -  G 0

-13-



Zx.-xi.- + - .. -2x M )+(G m -Gm)

x. -x.

JO0

+ Z(X -x M1+ -X.i

Z~x o -xm~l+ 'm+l G 1) + Z(X M-x.i)

x. -x.

30 0

G M - G -Z(x m+1 x)

x. 
- x.i

Cancelling Z from both sides of above equation we have

~ m ~m+1 - xm)

which implies A(m+l,m) = Z. Together with (2.2.12.a) and

(2.2.12.b) the proposition is proved.

Lemma 2.1. Suppose a,b,A,B are real numbers and B + b > 0,

B >0; we have

a) b>O0; A +a Aifand only ifa <
B +b< b BB

b) b<O0; A +a A if and only ifa A.
B+bF B U B

-'4-



Proof.

a) A+a <=)aB < hA
B +b B a

<=> a < bA
B

<F=> < (by b > 0)

b) A +a A <= <bA
B +b B B

A (by b < 0)
b B

Q.E.D.

Definitions:
S(x) =sup {G..(x)}

0<i<m I

Oi W)= sup {G.. (x)}m+l<j<n '

Theorem 2.2. A minimax schedule x is a SEAI with some non-

negative increment Z.

Proof. We prove the theorem under the following two cases:

Case 1: If {J 1 n>j>m+l - 4 then x is a SEAI with average

increment 0.

Case 2: If {} n>j>m+l then x is a SEAI with some

nonnegative average increment Z.

Case 1. By theorem 2.1. and {Jlfn>j m = 4 ' we have

U(x) = sup {Gi (x)}.
0<i<n

Suppose ix is the largest index such that U(x) =G. (x)

-15-



and suppose i x n. Because G.i (x) is a continuous function

in x
inx, xi+1, and increasing in x1 , decreasing in x1 together

with the assumption above, we can find a sufficiently small

c > 0 and a schedule

x E= (x1 1x2 1 ...,I x ,Xx - C,...xn

such that

G.i+ (x) < G' .x(x) = U(x) still holds, and,

(2.2.13)

G.(x E < (7, (x) = U W)
1 1

Thus U(x E:) < U(x) ; however x is minimax so U(x ) = U(x)

and i~e < ix.

Repeating the above procedure at most i. + 1 times,

we reach a schedule xO such that U(x ) = 13(x) and i x0= 0.

Again, let n '> 0 be small enough with the corresponding schedule

x =(0, xI- n, x2,...xn)

such that r,1 (x) < GO(xO) and G0 (x*) < GO(xO) then we have

U(x*) < U(x 0) U(x), a contradiction. Thus, ix=n.

If there is a i such that G. Wx < C Wx = U(x)
0 1 n0

then we can find a sufficiently small E > 0 along with

a schedule

x (x1 , 2 .. 1 ' +1 + Exi+~In
o 0 0

such that G. (xE ) < u(x) still holds. Since

10o+1(x Ci0 +1(

and Gr(xC) = G r(x), r=0,l,...,'i0 -l'i0 +2,.,,,n,

-16-



x is also a minimax schedule. By induction, we can find a

minimax schedule x such that G (x) < u(x ) which is a con-n

tradiction. Hence, Gi (x) = u(x) for all i.

Case 2. (j)n>j>m+1  .

Case 2. can be proved by three steps:

Step 1. To show 00(x) = ...= M(x)

and m+ (X)= ... = P (X) .

Step 2. To show there exists i0 and J0 such

that Gi m+l(x) G i0 n(x) and G0 .(x)=...=Gm  (x).
J0 30

Step 3. To show Z is nonnegative.

Step 1. By proposition 2.5. U(x) = sup {Gij(x)}
1j

and U(x) = sup { (x)} follows. By proposition 2.3.
m+l<j<n

and the definition of j (x), we know W(x) is continuous

and decreasing on x. for j = m+2,...,n and is continuous

and increasing on xj+1 for j=m+l,..., n-l. If we treat

Xm+l as a fixed initial point then the method in case 1 can

show

Pm+l(X) = ... = n(x) = u(x).

; analogously, if we treat Xm+1 as a fixed terminal point

we have

(x)= ... = (X) = u(x).

Step 2. Suppose *m+l (x) = Gim+1 (x) and Gi m+ 2 (x)
0 0

< Gi (x).

im17



Since M+2 (x)-Gi (x)

Gi m+2(x) = (i0+l)C + V(xi0+l - xi +Xm+- X.
0 0 0 m+2 100

G (x) -Gi0(

i0m+l(x) = (i +l)C + V(x. - x.0) + 1
010m+1 10 xi 0

we have

G im+ 2 (x) < Gi 0m+l (x)

G m+ 2 (x)- G. (x) Gm+ l (x ) - Gi0(x)

X1m+ 2  xi0 Xm+l - xi0

Since xm+2 - xm+1 > 0 by lemma 2(a), the above inequality

is equivalent to

(2.2.14) G M+ 2 (x) - Gm(x) Gm+(x) - Gi (x)

Xm+ 2 - Xm+1  Xm+0 - xi0*

At the same time, by the definition of q m+l(x), we have

Gim+l(X)< G 1 0 m+ l (x) for all i, and since

Gim~l W) G Wm) - Wm G(x) W (. (x)
( )( - 1 (Xm+ 1  - )

0 xm+ - 0i
GI

Gi~m1 () = m+1 ( Gm 1 (x) - Gi0 (x)
m~l(x)G~1 (x)10 (xm+ -ii) ,

0m 1 -x mi0

we have

G m+ l (x) - Gi (x)> G m+l (x) -G i0(x)

(2.2.15) xm+1 X- x Xm+1- x-



G+ (x) -C ml(x)> m+2 m+ (by 2.2.14).
Xm+2 - Xm+l

Thus,

WiG+ 2 (x) -G i (x)
Gim+2 Gi (x) + Xm+2 x (u-xi)

m+ 2 X.

[G m+2(x)-G m+l(x)]+[Gm+ 1 (-G i W)- G.i(x)+ +2()1 (X m+2 - Xm+ I ) + (xm+1 - x i ) (

From (2.2.15), Lemma 2.1(a), and Xm+2 - Xm+l > 0

we have
Cm (x) - S i (x)

Gim+2(x) < Gi (x)+ m+l _ xi (P-x

SGim+l (x); hence,

.im+2(x) < Cim+l (x) < Gi 0m+ l (x) = u(x) for all i

= m+2 (x) < Gi 0m+1 (x) = m+l (x), a contradiction with

Step 1. Thus, G m+ 2 (x) = G (x). By induction we have

(2.2.16) Gim+l(X) = Gi 0m+2 (x) = ". = Gi0 n(x).

By Lemma 2.1(b) and

0 = l(X) = = (x) = u(x), we can also prove

that there is a j such that (2.2.17) C0 J (X) = r j (x) = ... =  (x).

Equations (2.2.16), (2.2.17), and proposition 2.6. implies

x is a SEAI.

Step. 3. If Z < 0, by x is a SEAI, we then have

-19-



G. (x) - i )

Gij(x) = Gi (x) + -(-x
ij 1

= Gi(x) + Z( -xi)

< G. (x) for all (i,j),1

which contradicts u(x) = sup{G ij(x)}.
i~i

Thus, the theorem has been proved.

Theorem 2.3. If x is a SEAI with non-negative average increment

Z then G0(x) + Z1i=u(x).

Proof: If Z=O, by the definition of SEAI, we have

G0 (x)=G1 (x)= ...- Gn (x) which implies

G ij (x)=G i(x)=G()=G0(x) for all (i,j); thus by

theorem 2.1.,

U(x)= sup{Gij (x), Gi(x)= G0 (x)

(X) + ZI

If Z > 0, by definition of SEAI, we have

G0W)< G1(x) < ... < Gn (x) which implies r ij W > i W

for all (i,j); thus, by theorem 2.1, we have

u(x) = sup{Gij(x), Ci (x)} = sup{G ij(x)}.
1 ji,j

Because

Gi(x) = Gi(x) + A(j,i)(u-x i)

= G9 (x) - A(j,i) (xj-1j) for all (i,j);
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-- ... .. _ -- -. = ,-. '-7_-- : _ - ' " ' : - - =-- --' , ... -----0

and G.()- Gi (x)

(2.2.18) A(j,i) = 1
x- x

G (x)-G_ 1 (x) +S_ 1 (x)-...+G i+ 1 (x)-G i (x)

JJ

6j- + 6j-2 +...+ 6 i

Z[6-I + 6 +'+i ]

j-1 + 6j-2

the following hold

(2.2.19) G im+(x) = Gim+2(x) = (x) for all i

(2.2.20) Gj (x) = j(x) = . = (x) for all j.

Equation (2.2.19) and (2.2.20) imply all Gi .(x)'s are

equal. This is evident by the following diagram.

0 m+l (x) G0 GO +2 (x) = .. = G0n(X)

1 ml(x) m+G 1 m+2(x) ... Gn(X)

Gm m+l =xGm m+2(x) ... = mnx)

, where the row equalities follow by (2.2.19) and the

column equalities follow by (2.2.20).

By (2.2.18), we have

U(x)=sup{Gij (x)}= GOn(X) G0 (x) + A(n,0)u
1,)

S0 (x) + Z

Q.E.D.
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2.3. The properties of objective functions.

Let

g(b,n) = c+bTv- (n~1)c + C+ bvpi

(1b)+1 - 1

Proposition 2.7. If b > 0, n is a Positive integer, and

g(b ,n )=min g(b,n), where
(b,n) cA

0 A ={(b,n) IbE-R , nF$j, and

(bn -Y b 2 1) (1+b)n + 1 < 0}

then

* l~ )r - (l+b*)r 1 c6 1 b0bV

for r=0,l,...,n ,and 
6 r=xr+1 -Xr define the minimax

schedule.

Proof. By theorem 2.2. and 2.3., the minimax schedule, x

* minimizes

where

Gr+1l rr() Z r

and

n
E = 6 r>0Op Z >0, r=0,l....,n.

r=0

Equivalently,

(2.3.1) C + W6 + ZO

is minimized over 60with constraints
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(2.3.2) C + v6 r+1 v6 r + Z6 r (V+Z)

(2.3.3) n
Z > 0, Z > 0, r=0,1,...,nr=O r

holding.

However (2.3.2) and (2.3.3)

(2.3.4) 6 = (1+L)6 -C
r+l v r v

and

n
E 6 =T 6 > 0, Z > 0, r=0,1,...,n.

r=Or r

Let b Z, then from (2.3.4) we have

)r (1+b) r-Ic r0,, ,

(2.3.5) 6 =(1+b) 0 b -1..
r 0 b

n
E 6 =T, 6 r > 0, b > 0

r=0 r

which imolies

n n r
6 E (1+b)r - (l+b) c - T,0 r=0 r=0 b v

6 > 0, b > 0.
r

Rearranging,

c (1+b)r = (n+l)c > 0, b > 0,(0 -V 7-),(lb bv r

r=0

and solving for 60 we have

(2.3.6) = + (T - (n+l)c n

Z (l+b)r
r=0

c + (T (n+l)c b
= -V --bv- (l+b) n-I
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bT (n+1)E 6 >0bO

From (2.3.4) in order for 6 rl> 0, we have

(1+ CC Z1 -) 6 -- > 0; i.e. 6 > -L/(1+-) > 0.
v r v r v v

Thus, if 6 n> 0 then 6~ 0161 6n > 0. From (2.3.5)

and (2.3.6) we get

6 =(1+b)~ n (1+b )n -1 c hence,
ni 0 b v

6 > 0
n

(4, (1+ib )n 6> (1+b) -_1 c
0 bv

Cn
bT 6 - (1-i-)v 1 >_(~

(1+b) -1 b(I+b)

c + v6 r+l 1 (v + Z)6 r

n
E 6r= T, 6 r> 0, Z >0, r=0,1,...,n

r=0

(i.e. (2.3.2) and (2.3.3) holds)

6 bT -(n+l);7+

(nb - 1V b 2 _1) (l+b )n + 1 < 0,
C
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C + V6 +l (v+Z) 6 ro r=0,1,...,n-1.

However,

C +v6 0 + 1

= C+ VbT -(n+l)v + c.)+ ZU
(l+b) n+l -1 by

;thus, problem (2.3.1), (2.3.2),(2.3.3) is equivalent

to

min g(b,n); subject to
b,n

Tv 2 ni(nb-b + 1) (1+b) + 1 <0

and the associated schedule is

(2.3.7) 6 =(1+b)6 =1.. n-1,r+1 r v

60 = bT - (n+l)V Q.E.D.
(l+b) n+1 - 1 -vI

Proposition 2.8. If n(b) = max{nj (n,b)EA) then

min g(b,n(b)) = min g(b,n).
b-R ~ (b,n)cA

Proof. On taking difference,

g(b,n) - g(b,n-1)

c+(1+b)n (ncb - Tvb2 _-c)

f(1+,))n- 1] [(1+b)n _ 11

Thus, g(b,n) -g(b,n-1) < 0 and n'< n implies

g(b,n') -g(b,n'-l) < 0; also,

q(b,n) -g(b,n-l) >' 0 and n1> n implies
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g(b,n') - g(n'-l) > 0

from which the proposition follows.

Since (b,n) E A if and only if
Tv b2n

(nb 1- ) (1+b)n + 1 < 0, we define

fn(b) = (nb T c b2 - 1)(l+b)n + 1. We then have

n(b) = max{nlfn(b) < 0}.
nC*

Let no = lim+n(b).
b-0

Proposition 2.9. n0 > max {nln(n+l) <- nc$ c

Proof. Expanding (l+b) we have

fn(b) =n.Sl )b 2 _ TV b 2 + 0(b 2) < 0.

Then

n(n+l) Tv 0(b 2 )
2b 2  asbO and thus

n(n+l) < 2Tv Q.E.D.
C

The equality in nrovosition 2.9. holds when 2Tv is not

an integer, and max {nln(n+l)< -Tv} is the optimal number of

inspections in Derman's schedule, the minimax inspection

schedule when nothing is assumed about the distribution of Y.

Proposition 2.10. lir f (b) = n(n+l) - 2Tv

b +0 n c

Proof. Follows from the proof of proposition 2.9.

Q.E.D.

From the definition of n0 and proposition 2.10., we have
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fn (0 + ) > 0; thus we can define bn as follows:n0+ 1  n0+1

Definition: b = sup{blfn (b) < 0, fn (b) > 0}.
n0+1 b>0 0n0+1 -

Proposition 2.11. b is the unique zero of f (0+1 -n0 1

on (0,-), and n(b) = n0 for O<b<b

Proof.

(2.3.8) fn 0 (b )  b(l+b)n 0[(n 0 +l) (n 0 +2) 2-v -(n0+ 3)Tb

By (2.3.8) we have f + b and f n0l()=-o which implies
n0 +1 n +1

f ( has an unique zero on (0,-)(see Fig 1).

Let f (x) = 0, we
n0+ 1

have f (b)n0+1  Fig.l.

(2.3.9) (b) > 0 if 0 < b < x
n
0+1

(2.3.10) f (b) < 0 if b > x.
no~n0+ 1

Also, by proposition 2.9., we have

(2.3.11) f b) b(l+b n0 (n 2Tv -(n ) b] < 0= no 0n0+1) c 02c

which implies

(2.3.12) f (b) < 0, if 0<b<x.

The definition of n(b), b , (2.3.9),(2.3.10),

(2.3.12) prove the proposition.

if fk+l(bk+l 0, f (k+lX) < 0 for x > bk+l, and

fk+l(x) > 0 for O<x<bk+lI then we have

fk+2 (bk+l + c) = {(k+l)bk+1 + (k+l)c + bk+ 1 + £ - (bk+l

+0) 2 - 1) x (l+bk+ 1 + C)k+(l+bk+l + C) + 1. As C-0
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(2.3.13) f k+2 (b k.l+) >. 0

holds; also,

f k+l (b k+l + 0)<O V £->0.

We can inductively define b k+11 ,...,1--O as follows:

Definition: b k+ 5UP bfkl(<,f k+2 (b>-}

Proosiio 2.3.13) uimuezrs b+ af unqezr

n nk0+

nk(b) 0 ifbk< b <bkl'hrx.ono,, ndhn00

f'k+ (b)> i 0fo b > lbkxl

k+ 1l

together with

fk+l (bk+1

we have

Proposition 2.13. g(b,n(b)) is a continous function.
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Proof.

lir g(b,n(b)) - Jim g(b,n(b))

b +bk+1 b-bX+1

= g(b k+l'k+l) - g(bk+l,k)

cfk+l (bk+l) 0
(l~bk+1 k+l

((l+b k+ [(l+bk ) k

Q.E.D.

Pronosition 2.14. For a given b>O, let k=n(b) and

k+l
s(b) k+ , if Tv s(bk+l) > 6 thcn g(b,k)

(1+b) c

is a convex function on (bk,bk+ .1.

Proof. By taking first and second derivatives on g(b,k)

with respect to b, we have

(2.3.14) d g(b,k)

TVic +(l+b)k {kb TV (k+i 2 -}
c c T

k + 1 12 + MI_ c

-~~b 1i b

and

(2.3.15) d 2b2 g (b,k)

db

-Tv (1+b) k-1{(l+b) k+l p(b,k)-(k 2+3k+l) (+b)-k(k+l) (1+

{(1+b)
k + - 1)3

k+l

2
(k+l)

where 0(b,k) k(k-l)b+2 - (k-2) Tv
-
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Let x b bk+l, by definition, we have

1+ (l+x) k { (k+l)x _-I x2-11 0

~ni-1 = Tv x~ + s(x)
C X

For convenience, let a =I- and s =s(x), then
3 4 3 22

-x 3 Ox,k) = (sa-2)ax 4- (3s+2)ax 3+2as 2x 2_3s 2x

+S =af~a-)x _(3s+2)x+s 52 x 2+s 2 7ax 2_3x+s}.

The discrimina.nt of the nuadratic Polynomial in the first

brace of the above formulation is

2 _ (a-)2 <2 200 100
(2.3.16) (3s+2) - (s -6 1-25- - sa

,and in the second brace is

(2.3.17) 9-28as

The condition as > 6 makes both (2.3.16) and (2.3.17)

negative; hence, we have 4'(x,k) < 0. Since f(.,k) + b

for bk < b <b +l x, we then haved22 bk)0fo

db

b E(b k'b k+1].

(Q.E.D.

Proposition 2.15. d ~~~))>0i

Proof. b > cV~

(2.3.18) -1 -~ +7 vi>
b c

Also,f nl

c
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1 + (1+1 n+1 (n+l) 2 Tv (n+1)2
Tv+ 1+~ Tv _ T

which implies n-ii> n1

thsl+(1+b) n nb - Tv n+1)2 1

< l+(1+b)n {nb - -y2_1

C

f ~n (b) <0, where n=n(b).

Together with (2.3.18) and (2.3.14), we have

d

Q).E.D.

Proposition 2.16. Tvsb) .

P'roof. Recall that s(b) =1+ n+l) ~ hr
(1+b n+i )n+ hr

nn(b). By proposition 2.12., we have n(b) tb and

b +i +b' Q.E.D.

As a summary of proposition 2.13, 2.14, 2.15 and 2.16,

we have the following theorem.

Theorem 2.4. If -v s(O+) > 6, then the objective function

g(b,n(b)) is continous and viecewise convex, and the optimal

b is in 101/ c)
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Proof. By proposition 2.13.,2.14.,2.15., 2.16..

O.E.D.

2.4. The asymtotic minimax schedule as T--.

Definitions: XT denotes a schedule on (0,T].

For a given schedule x, n(x) is the total number of inspections

assigned, 6i (x) is the length between ith and i+l th inspections,

and u(x) is the corresponding supremum expected cost. If x

is a SEAI then Z(x) is its average increment level. If

6 (x)= Tn(x)+l for all i, then x is called a strictly periodic

schedule. If s is a real number, [s] denotes the largest

integer which is small then s.

Proposition 2.17. If x is a strictly periodic schedule

then x is a SEAl.

(i+2)c + v6 i+(x)-(i+l)c - v6i(x)Proof. A(i+l,i)=

6i(x)

=.c(n(x)+l) (.E.D.
T

Proposition 2.18. If {T} is a time sequence and T.
, *

as j1, then n(xT. )- as j--, where XT. is the minimax
1 1

schedule on [0,Tj].
0

Proof. Suppose XT. is Derman's schedule on [0,Tj
T 

)

then Z(XT ) = 0, by proposition 2.12., we have
T

n(xO ) < n(xT).
T -
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But lim n(x = T.) The DroDosition follows.
3

Theorem 2.5. If xT is the minimax schedule on [0,TJ then

there exists a strictly periodic schedule x0 for each T such
T

that

lim u (X) lin u(x*)T T T T

c

C + v ,'i-c + + ./V-

Proof. By theorem 2.3., xT is a SEA1 and

(2.4.1) u(x) c + v60(xT) + Z(xT)..

Let {T.} be any time sequence such that T. - as j- ,
3] j

and x0  be a strictly neriodic schedule such that
J

. T.

0 T

1u (x T c V+ ;/vI Tj

0 T.U(X T.) c + v - I + p - _ *-

Since F --1

i i

1 * 0l=m and u(xT) < u(x T )j T. i/j -

we obtain
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j /T-

(2.4.1) and (2.4.2) imply that limsup 6 0 (x T

and limsuo Z(x T.) are both finite.

Suppose 0 is a limit point of {Z(x T )I

T..

*-*

By proposition 2.7. and b = ,we have

*v

lrn U(xT.

TZ(X T.) (n(xT. ) + 1)c

* ( ) + ~. -Z(xT

+ Z(x T.)II

2 Zn+i
-i lrn C + TZ -(n+.)cZ + vc[I1+V) - + Z~j.

n-co Z-~O Z[(+-)n~ _ 11

Applying L'Hospital's rule twice, we obtain

which implies
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lmu(* lm(n+1) c +T!V OI lim U(XT.; = lir +n-l c

jk- Tk n-u 2 n+I

a contradiction with (2.4.2). Thus,
* 0

(2.4.3) lim Z(xT ) = Z > 0.

By proposition 2.7. we have

Z(xT )T- (n(x ) + l)c
* JkV V 

(2.4.4) %0(xT ) = T + *
0 T (+Z(x n(x T.) +Z(X

T )i]k (I Z(T. ) k .).
~~3 k  k k

v

Because (2.4.3) holds it can be seen that the first term

of the right-hand side of (2.3.3) tends to zero when jk);

thus, lim 60(x* c 0
0 T. 0'

Since c + + > c + v Pc + P S- is always true

for Z0 > 0, we have

* *lim u (XT.)

lim c + v 0(xT. ) + IIZ(xT.
]k Ik

Fk

F - 0

ZC

> C + V + Z

FVc /P + I -
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together with (2.4.2) and the definition of {XT}, we have
3

* c *

lir u(x ) C + v/C + 1 im U(xT)

/ -

Q.E.D.

2.5. Optimization by an algorithm.

The objective min q(b,n(b)) in proposition 2.8. can be
b,>0

standerlized as follows.

min cT(b, n(b))
b>0

b- v -[n(b) + 1
Cmin (1+ c + 1v+b!L 1-n(b)+l b T c

b>O (l+b) -1

C min g(b,n(b),-, 1L)
bNO c' T

and by multiplying 6.'s by 1 respectively, (2.3.6)b c

becomes

S~b)~::6~=blT - (n(b) + 11+0 (b) - 0 = +
(l+b) - 1

and

6r(b) = r = (1+b)r 0(b) - (lAb)r -

for r=l,2,...,n(b).

Note that q and 6 (b)'s are determined by STv T and
r c' T

b, and the optimal b for g is also optimal for g.

For the optimal b we have following algorithm.
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Algorithm 2.1.

Step 1. Use the bisection method to obtain the uniaue

zero of fn0+l, fn0 +2,.. on [0,-), lbn.+l, ) ,

[b n ),..., resnectively.

If b 1 ...- then n=k and go to step 2.
k+ 1 lIV

Tv

Step 2. If - s(bn ) > 6, go to step 3; otherwise, let

m=max ik- s(bk+l) < 6, n0 < k < n), go to step 4.

Steo 3. If db(bn+,n > 0 then use the bisection method
db n+0 0

to obtain the unique zero of d (., no) in

[F, b 0l, where c is a small oositive number

such that do(dq,n 0. if (,no) < 0,

00let n0bn + 1. Set m=n 0 then qo to step 5.

Step 4. Graph g(b,n(b)) from o to bm+l, let bm satisfy

g(m) = min {g(b,n(b))}. r,( to sten 5.
O<b<bl

Step 5. Let k=m,...,n.

If dg(bkk) (bk1 ,k) d 0 then use the bisection

idk,bk+ll. If (bk,k) (bk+l,k) > 0 and (bklk)>

dq

then bk = bk. If (bk,k) (kk) >( 0 and
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(b k'k) O then k 1) k .I T,' s toe 6.

Step 6. The optimal b satisfies

(L)b (n (b mi )(( -- ~ '~k' n (bk))I

The finiteness of step 1.

Suppose lrn b k < Ac ,by the definition of b kand
k " -k

proposition 2.11 we have

,/?+ k (k /c-- Tv c. + 1 < 0 as k--

which is false. Hence, there is a n+l such that b- >~ AcIIV

The optimization of algorithm 2.1. is then followed

by the f ini toness of step 1. , theorem 2.4, tnronos; i ti on 2.7

and P~roposition 2.8.
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